

University Laboratory High Retrofit Design

Origins 1876

•

•

Uni High with its rich history of 3 Nobel Laureates and a Pulitzer Prize winner is one of the most unique and beautiful elements on the Illini Campus

With construction that old, the University has **subpar sustainability** standards

Having **envisioned** to have a more **full-filled program**, Uni High could be one of the **retrofit designs**, that **preserves the old while introducing the new**

INSP.I.R. AIM

- Develop the originally proposed east wing with modernized sustainable design
- Reinforce the dual purpose of the building: Education and Education Research

Additional Functions introduced

Gymnasium Auditorium Solarium + Cafeteria Kitchen facilities Teacher's Offices

Design Strategy

Architecture

- Merge modern and gothic architectural styles
- Integrative landscape and use of classical proportions

Energy and Sustainability

- Double pane windows
- Solar composite walling system
 - CERV and ERV systems
 - PV technology

Architecture Façade Transitioning from the old into the new

Design Strategies responsive to the climate

Cross and Stack Ventilation

South Façade glazing

Solar Shading

Tree location and shading

Interactive Interiors – Interactive connecting corridor

Pavegen

Papertile

Interact and Innovate Footsteps in energy Recycle and Design Personalize patterns

Walling Systems

Performance

- Solar Composite Wall (Reverse heat circulation) Heat retention through green house effect, lesser infiltration of cool air
- Rammed Earth massive wall Higher U value, works as a better thermal insulator than concrete, sustainable, lesser embodied energy.

Walling Systems

Resilience

Illinois is prone to tornado weather events, requiring secure and resilient spaces where occupants can wait out the storm. The partial underground theatre space proposed in the east wing will provide space for a full student body and staff with thick concrete walls, free of glass and other shatter prone materials. The ramp entrance provides easy access for disabled or injured persons.

Battery systems are being considered to provide an alternative method to store excess energy produced by the solar arrays for disaster scenarios. This system will be sized to run critical loads for the extent of predicted catastrophes or grid blackout.

Landscape Design

- As an extension of the gym and solarium
- Native shrubs and deciduous trees for shading
- Permeable pavers
- Reduction in stormwater runoff

Energy Analysis

Cases Studied

1. Original building

2. Original building with windows and basement insulation retrofit

- 3. Insulation with mini-Split heat pumps
- 4. Original building + Addition (With retrofit insulation)
 - 5. Original Building + Addition with mini-split

Sketch Up + Open Studio

UIUC uses Energy Plus for analysis which is a combination on Open Studio and SketchUp

Assumptions considered for energy simulations

- All rooms except the basement are based on classroom schedules Heating & Cooling Humidity Lights Activities
- Modern construction standards are used for calculations for building materials Windows Walls Indoor walls Underground construction walls

Original Building – Current Building Performance

the

simulation
Data (FY2017)
Heating: 6,329,000 kBtu
Cooling: N/A
Electricity: 1,176,000 kBtu
EUI: 141 kBtu/ft^2

Simulation

End Use	Consumption (kBtu)
Heating	615,219
Cooling	315,727
Interior Lighting	899,441
Interior Equipment	638,620

Total Electricity:

1,528,061 kBtu

EUI: 51.26 kBtu/ft^2

HVAC

System Components	Existing System	Retrofit Design
Ventilation System	None	The CERV / RenewAire ERV
Heating	Steam Radiators	Ductless Mini Split Heat Pump
Cooling	Window A/C unit	Ductless Mini Split Heat Pump

Existing Radiator system CERV Conditioning Energy Recovery Ventilator Split AC units

HVAC – Air Quality and Comfort

System Components	Existing System	Retrofit Design
Ventilation System	None	The CERV / RenewAire ERV

System Capabilities	Existing System	Retrofit Design
Flowrate of 35 cfm / student in classrooms	\times	\checkmark
Active monitoring and of CO2 and VOCs	×	\checkmark

Milton, D. K., Glencross, P. M., and Walters, M. D., (2000) Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints. Indoor Air, 10: 212-221.

HVAC – Heating and Energy Consumption

System Components	Existing System	Retrofit Design
Heating	Steam Radiators	Ductless Mini Split Heat Pump
Cooling	Window A/C unit	Ductless Mini Split Heat Pump

System Capabilities	Existing System	Retrofit Design
High heating capabilities for frigid winters	\checkmark	\checkmark
Local control of temperature	×	~
Optimal energy usage and reduction of waste energy	×	\checkmark

PV&E System Overview

- Current electricity consumption of school: ~ 329,000 kWh/year
 - Three separate systems
 - Current Building Roof
 - New Gym Roof
 - Parking Lot
 - Two types of panels
 - Standard polycrystalline
 Bifacial hybrid

PV Module Specs	Standard Panels	Bifacial Panels
Model	Canadian Solar CS3W-395	Sunpreme Maxima GxB 390
Efficiency	17.88%	20.1-24.1%

Current Building Roof and New Gym Roof Systems

- Canadian Solar CS3W-395 panels
 - 140 on Current Building
 100 on New Gym
 - Optimum tilt of 33 degrees
- SunModo SunTurf Roof Mount system
- Yaskawa Solectria 1000 65/65 inverter

Parking Lot System

- SunPreme Maxima GxB 390 bifacial panels
 - 320 total groups of 40
 Tilt of 13 degrees
 - SunRail CPR Bifacial Carport
 - CPS SC20KTL DO/US 480 inverters

Current Building Rooftop Single Line Diagram

Capacity and Generation

- Total installed capacity: ~ 220 kW
- Total energy generation: ~ **382,000 kWh/year**
 - 4.93 kWh/m²/day for roof mounted panels
 - 4.65 kWh/m²/day for parking lot panels

System	Energy Output
Current Building Roof	99,510.11
New Gym Roof	71,078.65
Parking Lot	211,719.80
Total	382,308.57

Economic Analysis of PV Systems

- Capital Cost: ~\$402,000
- At installation cost of \$1.83/W (NREL)
 - Annual Savings: ~\$30,000
 - At utility rate of 7.9 cents per kWh
- Payback period: 13.24 years

	Current Building Roof	New Building Roof	Parking Lot
Capital Cost (\$)	101,199.00	72,285.00	228,384.00
Annual Savings (\$/year)	7,901.10	5,643.65	16,810.55
Payback Period (year)	12.81	12.81	13.59

Energy Analysis

Again!

Retrofit

- Mini-split ductless added to all roomsNo mini-split added in basement Results
- •EUI: 41.40 kBtu/ft^2

•Heating

- Additional Savings: 140,997 kBtu
- Total reduced : 311,216 kBtu
- Total annual saving: \$3,988

Cooling

- Additional Savings: 115,435 kBtu
- Total reduced: 184,407 kBtu
- Total annual savings: \$4,809
 Additional fan energy cost: \$543

•78% of HVAC load can be provided by PV

Average household 129,000 kBtu

End Use	Consumption (kBtu)
Heating	304,003
Cooling	131,320
Interior Lighting	899,441
Interior Equipment	638,620
Fans	20,833

Case 5

SketchUp model of original building with extension

Section View of the model

New Parameters include schedules of Gym, Cafeteria, Kitchen, Auditorium, Locker Room, Office

Case 5

Retrofit:
 Original & Addition (with mini-split)
Results
•EUI: 47.85 kBtu/ft^2
 Total increase by 1,289,000 kBtu Compared to case 3
 •Total decrease of 729,000 kBtu • Compared to case 4 • Sovinge: \$6,505
 63% HVAC load provided by PV (W/O Parking)
 100% HVAC load provided by PV 88,700 kWh extra (300,000 kBtu)

Average household 129,000 kBtu

End Use	Consumption (kBtu)	
Heating		649,549
Cooling		272,507
Interior Lighting		1,183,748
Interior Equipment		1,144,688
Fans		39,078

Building End Use summary for Case 5

Total Site Annual Energy Consumption (kBtu)

Total site annual energy consumption for each case in bar charts

Total Site EUI (kBtu/ft^2)

Average K-12 School EUI: 150 kBtu/ft^2

Summary

Insulation reduces heating and cooling load significantly

Mini-Split ductless heat-pump further reduces the loads

 Electricity as main source
 Electricity energy more expensive per unit
 Still Yield net positive savings

•Building extension increases energy consumption & EUI •Recommend mini-split ductless heat pumps • Space and activities •Quality of Life

Prajakta Gharpure Khee Low Kyle Kovitz Peter Davis Oka Bavuudorj Kriti Chaudhary Jesse Chukwuka **Kristian Martinez** Elisa Krause Kweku Osei **Cole Froelich** Adalberto Dejesus Jesse Chukwuka-Dibie Matthew Lawrence Syed Touseef Ahmed Nana Akenten-Busia Devansh Kothari Lara Iriarte Rong Jin Kabir **Alkesh Sumant** Angshuman Baruah Jack Lanser