University of Illinois Facilities and Services April 6, 2020

Crowd Management for Quad Day

Weichen Li PhD Student Ruifeng She PhD Student

Xiaojia Shelly Zhang Assistant Professor Yanfeng Ouyang George Krambles Professor

Civil and Environmental Engineering University of Illinois

Event: Quad Day

Planning phase: Spring 2020

Event date: September 2020

Topic: Traffic measurement, estimation, planning, and control for special events

Summary and Recap

Objectives and Concerns

- Better traffic flow & management in the Quad
 - Allow more people to participate in activities (accessibility)
 - Allow people to get to their activities fast(mobility)
- Alleviate congested areas:
 - Popular booths
 - Demonstration regions
- Options and restrictions
 - Adding new pavements over the lawn is NOT preferred
 - moving the booths onto the lawn is NOT preferred
 - Extending the Quad Day to two days is an option
 - Moving some of the booths to the South Quad is an option
- Remaining Questions
 - What adjustment to the Main Quad is feasible?
 - Adding barriers/guiding facilities?
 - Relocating/clustering booths?
 - Enforcing one-ways?

Research Plan

- Benchmarking Status quo of current Quad Day
 - Demand estimation
 - Route generation
 - Finite element analysis
 - Simulation
- Proposed Solutions
 - What adjustment to the Main Quad is feasible?
 - Relocation of booths
 - Adding barriers
 - Extending operation area
 - Extending time

Benchmarking

- Abstract graph from popular clusters
- Total duration: 11 AM 4 PM
- Peak hour: 12 PM 2 PM
- Assume 20,000 people visited throughout the duration, and peakhour flow takes 30 % of total flow.
- Where do congestions form and how does the composition of visitors affect the pattern?
 - Assume background traffic of 2400 people/hour uniformly distributed.
 - Categorized flow of 4000 people/hour on specific routes.

Benchmarking – Touring 1

Metric	Measure
Max Density	0.15 (#/ft ²)
Max Delay	82 (sec)
% Stopping	6%
Median	2.82(ft/sec)

Benchmarking – Touring 2

Metric	Measure
Max Density	0.15 (#/ft ²)
Max Delay	113 (sec)
% Stopping	12%
Median Speed	2.67(ft/sec)

Benchmarking – Carnival games & Food

Metric	Measure
Max Density	0.17 (#/ft ²)
Max Delay	169 (sec)
% Stopping	19%
Median Speed	2.32(ft/sec)

Benchmarking – Pre-professional and Academic

Benchmarking – Athletic & Recreation

Metric	Measure
Max Density	0.18 (#/ft ²)
Max Delay	237 (sec)
% Stopping	36%
Median Speed	1.37(ft/sec)

Benchmarking – Combination

Uniform combination of the 5 routes + background traffic

Metric	Measure
Max Density	0.18 (#/ft ²)
Max Delay	142(sec)
% Stopping	14%

Proposed Solutions

- We use the **Athletic & Recreational route** as illustration, with intuitive rearrangement.
- The optimization procedure will be designed to achieve optimality.

Options:

- Relocating booths
 - Consider allocating popular booths on wide walkways / closer to entrance for easier access.
 - Consider further clustering relevant booths to form short routes for dedicated visitor groups.
- Adding barriers
 - Use barriers to reject some "bad" routes that are likely to generate counterflow and queue.
 - Block over-popular links/entrances(such as one next to a bus stop) to avoid concentration.

Proposed Solutions – Relocating booths

Proposed Solutions – Adding Barriers

Further Questions and Suggestions

- Improvement options
 - Provide students with proposed routes (with flyers or map stands)
- Data Needs
 - Quantified origin-destination demand
 - Number of registered members of each RSO (this indicates popularity, and can be used adjoint with the map from last year to estimate traffic)
 - Number of food/drinks/other giveaways distributed in previous years as indicators of number of attendees.
 - Relative popularity of booths
 - Relative popularity of entrances
 - Specific range/layout if extending activity area
 - Budgets and restrictions
 - Lawn restoration if using lawn area is considered
 - Utilizing south quad if considered (Power extension, generators, etc.)