Agricultural Waste Management

Axel Heilborn, Ryan Grosso, Shyama Pandya, Matt Fabian

Shyama

Overview

Introduction

Goal and scope

Methods

Results

Agriculture contributes to 9% of US emissions

~ 600,000 metric tons CO_2 eq.

Results

Conclusion

3

Shyama

Traditional manure storage vs Anaerobic digestion

Introduction

Goal and scope

Methods

Results

Axel

Why anaerobic digestion?

- Environmental
 - Less greenhouse gas emissions
 - $\circ~$ Capture nutrients for reuse as fertilizer
 - Reduces runoff
- Economic
 - Producing renewable energy
 - Reducing fossil fuel dependence

Goal and scope

Methods

Results

Axel

Source: USDA

Conclusion

5

Dotoption

Introduction

Goal

Evaluating environmental and economic impact of using anaerobic digestion for animal waste management

6

Shyama

LCA - Traditional manure management

Goal and scope

Methods

Results

Conclusion

Shyama

LCA - Anaerobic digester

Approach and Methods

- LCA -- g CO₂ eq/ton of manure
- CBA -- \$/ton of manure

2 Primary Data Sources

The Economics of Biogas in Denmark

Goal and scope

Methane Production by Anaerobic Digestion of

Methods

Results

Conclusion

Introduction

Cost-Benefit Analysis - The Biogas Plant

Total Annual Cost: 4.95 Million USD

Electricity
Investments
Reinvestments (Year 10)
Maintenance

Ryan

Transport of Manure

Transport of Energy Crops

Running Costs

Purchase of Biomass

Source: Jacobsen et al., 2013

Introduction

Goal and scope

Methods

Results

10

Cost-Benefit Analysis - The Biogas Plant

Benefits:

- Production & sale of biogas
- Sale of byproduct (fertilizer)

Introduction

Ryan

CBA - By the Numbers

10th Year Investment: 2.18 Million USD

For a centralized biogas plant (250,000 tonnes/year):

Annual Costs: 4.95 Million USD

Goal and scope

Annual Benefits: 6.33 Million USD

Initial Investment: 14.4 Million USD

Methods

Discount Rate: 5%

Life-span: 20 Years

Results Co

Conclusion

Ryan

Introduction

Cost-Benefit Analysis - Society

Ryan

Matt

Assumptions

European data can be applied to US

Conventional manure storage and usage

Discount rate

Lifetime of 20 years for biogas plant

14

Results and Discussion

Analysis

Potential for a more sustainable agricultural waste management system

Potential for higher quality fertilizers

Can be profitable

Challenges

High initial costs

Dependency on governmental support

US lacks necessary infrastructure

Introduction

Goal and scope

Methods

Results

Conclusion

70

60

GHG Mitigation

Axel

Putting the savings into perspective

4.7 tonne CO_2 /year

97 kg CO₂/head/year

Introduction

Goal and scope

Methods

Results

Conclusion

Putting the savings into perspective

4.7 tonne CO₂/year

690 kg CO₂/head/year

Introduction

Goal and scope

Methods

Results

Conclusion

Axel

CBA - Results

Our spreadsheet:

	Year			
Project Cost Benefit Analysis	0	1	2	3
Benefits		\$6,335,357	\$6,335,357	\$6,335,357
Costs		\$4,950,672	\$4,950,672	\$4,950,672
Capital Costs	\$14,382,100			
Net Benefit	(\$14,382,100)	\$1,384,685	\$1,384,685	\$1,384,685
(@ 5%)	(\$14,382,100)	\$1,318,747.62	\$1,255,950.11	\$1,196,142.97
Initial Investments	\$14,382,100			
Operating Costs	\$4,950,672			
Annual Revenue	\$6,335,357.00			
Discount	5%			
Investment <mark>(</mark> 10 Year)	\$2,179,236			

CBA for selling to CHP

Introduction

Ryan

Conclusions

Successful in Denmark

GHG emission reductions

Challenges to widespread US implementation

20

Questions?