Reducing Water Use on Campus: Cooling Towers

Deluhery, Chen, Rajagopalan

ILLINOIS SUSTAINABLE TECHNOLOGY CENTER PRAIRIE RESEARCH INSTITUTE

Funded By Student Sustainability Committee, UIUC

Acknowledgements

• We would like to thank all of the people from Facilities and Services, in particular the Water Station and Utilities departments.

For Questions Contact:

- Dr. N. Rajagopalan <u>nrajagop@illinois.edu</u> 217-244-8905
 - Jennifer Deluhery <u>deluhery@illinois.edu</u> 217-244-4314

 Morgan Johnston <u>mbjohnst@illinois.edu</u> 217-333-2668 In 2008, the University of Illinois at Urbana Champaign signed on to the American College & University Presidents' Climate Commitment.

In 2010, the completed Illinois Climate Action Plan (iCAP) was published.

"Our intentions are clear and our goal remains ambitious: to be the model of sustainability for all universities in the nation."

-Robert A. Easter, *Chancellor* (iCAP)

The campus has made a commitment to reducing greenhouse gas emissions, energy and water use.

Where Do We Want to Be?

The University's goal is a 20% reduction of campus potable water consumption by 2015. A 40% reduction by 2025 is envisioned.

Where Are We Now?

The University has already achieved a 16% water reduction as of July 2011.

How Will We Get There?

Additional reductions in water consumption requires closely examining how water is currently used on campus and what opportunities are available for improvement.

All Campus Water Use FY 2011

When we start to look at how water is used on campus it is clear that the water used at Cooling Towers is a large percentage of the pie. Some advantages of focusing on water conservation at these locations is that they are (a) point sources and (b) actively managed by dedicated and trained personnel.

Project Goals

- Benchmark Water Use in Cooling Towers & at Abbott RO Plant
- Generate Ideas for Improving Water Use Efficiency

Customer/Collaborator – F & S Project Sponsor – Student Sustainability Committee

Current Campus Water Use and Costs

Current Cooling Tower Efficiency

Cycles of Concentration (COC)

Summary Benchmarking Results

- The largest amount of water is being used at Oak Street Chiller Plant (OSCP) and North Campus Chiller Plant (NCCP).
 - These locations are chemically treated
- Significant water use is occurring at
 - Abbott Power Plant chemically treated
 - Vet Med Chiller Plant untreated
 - Housing Food Storage untreated
 - Natural Resources Studies Annex (NRSA) untreated
 - Law Building untreated
- More water, by volume, is going to the sewers from the smaller, lower COC towers than all of the large chiller plants.

Policy Recommendations

- Facilitate Information Access/Greater Campus Involvement/Innovations
 - Make available web-accessible campus wide monthly water use data in a format amenable to querying and analysis
 - Make available web-accessible monthly water quality reports at cooling towers
 - Encourage instructional use of data in campus courses on sustainability
 - Seek solutions from students/faculty/staff
- Raise the Bar on Water Conservation
 - Establish/Publicize anticipatory yearly goals for achieving water reduction
 - Establish/Publicize planning, progress, and barriers
 - Adopt a policy of 5 Cycles of Concentration for cooling towers at Centralized Chiller Plants
 - Amend existing policy of prohibiting once-through cooling to a minimum of 3 cycles of concentration at stand alone cooling towers
- Integrate Campus Wide Efforts on Energy Conservation with Water Conservation
 - Account for and take credit for associated water dollar savings and volume reductions associated with energy efficiency upgrades

Action-Items

Actions

- Install Trasar 3D monitoring at Oak St (Done) and Vet Med Chiller Plants
- Initiate engineering design and feasibility study of sulfuric acid dosing to increase COC at chiller plants
- Explore optimization of Abbott Cooling Tower and RO as a whole system
- Monitor the feed water going into the RO at Abbott to allow for independent determination of the RO efficiency
- Monitor any existing Cooling Tower blowdown meters to compare operation with the observed chemistry

Pilot Studies

- Initiate piloting of Nanofiltration of Oak Street Sub-soil drainage water as make-up for cooling tower
- Conduct pilot investigation of non-chemical water treatment (especially VRTX) technologies for stand-alone towers

UIUC Cooling Tower Location Map http://goo.gl/maps/jf6K

Cooling towers are spread all over the University of Illinois Urbana-Champaign Campus.

The spatial distribution of small towers makes close monitoring a challenge. The larger Chiller Plants, however, are closely monitored by on-site staffing on a daily basis. This means that 2 different strategies are needed to manage these towers. The smaller towers should continue to run with minimal attention while operations at the larger Chiller Plants are more amenable to closer monitoring and control.

What is a Cooling Tower?

Equipment that cools water through evaporation

 On campus, primarily used to remove heat from buildings, especially in summer.

How is Water Lost in a Cooling Tower?

Where Does A Cooling Tower Fit?

Water Use Data For All Campus Cooling Towers Fiscal Years 2010 & 2011

2010

2011

Fiscal Year

Campus Cooling Tower Water Use FY 2011 Without Abbott Power Plant

* CLSL off for most of the year to bring it onto the loop as a booster chiller.

Campus Cooling Tower Water Consumption FY 2011

A Little Cooling Tower Jargon

- Cycles of Concentration (COC): A measure of water use efficiency
 - Bigger number is better
 - Typical target: 4-5
- COC dependent on water quality
 - Higher water quality into the tower allows higher target COC
 - Higher quality typically also means more water pretreatment/more \$\$\$

Cooling Towers vs Efficiency

Number of Cooling Towers

Treated vs. Untreated CT

More Heat Removed, More Water Consumed (Abbott Not Included)

Blowdown - Untreated Towers (FY 2011)

Cycles of Concentration - Range

Summary Benchmarking Results

- The largest amount of water is being used at Oak Street Chiller Plant (OSCP) and North Campus Chiller Plant (NCCP).
 - These locations are chemically treated
- Significant water consumption is occurring at
 - Abbott Power Plant chemically treated
 - Vet Med Chiller Plant untreated
 - Housing Food Storage untreated
 - Natural Resources Studies Annex (NRSA) untreated
 - Law Building untreated
- More water, by volume, is going to the sewers from the smaller, lower COC towers than all of the large chiller plants.

Current Cooling Tower Efficiency

Benchmarking Abbott RO

- RO Flow rates at Abbott Power Plant were analyzed over a 2 fiscal year period.
- Based on the data provided we assumed that the Pass 2 reject went back as feed to Pass 1. This means that the system would look as diagramed below.

RO Plant Efficiency

If we assume that the Feed is equal to the 2 Outputs (Pass 1 Reject and Pass 2 Permeate), we can estimate an efficiency.

RO plant efficiency calculated as ratio of permeate to (permeate + reject) as separate metering of feed not currently practiced.

Summary

- The data indicates that there has been little change between RO performance in FY 2010 and FY 2011.
- To allow an independent determination of RO efficiency, it is recommended that the feed flow rate to the RO be measured.
- While opportunities for optimization doubtless exist, large gains per unit effort are less likely.

Routes to Water Reduction

ROUTE 1

Decrease CT water consumption by increasing COC

Treat water at more towers (chemical, non-chemical)Treat water more intensively

Results of Cycle Changes at Cooling Towers (excl Abbott)

- 57.3 Million Gallons total water savings (click to see details)
 - This would represent a 20% savings of total Campus Cooling Tower water consumption for 2011
 - It would represent a 5% savings of total Campus water Consumption for 2011
- In one year, cost savings could amount to \$136,000*!!

Results of Cycle Changes at Abbott

- 19 Million Gallons total water savings (click to see details)
- This would represent a ~40% savings of total Abbott Cooling Tower water consumption for 2011
 - It would represent a ~2% savings of total Campus Water Consumption for 2011
- In one year, cost savings could amount to \$71,000*!!

Evaluation of Increasing CT Cycles

- Cost calculated by estimating Makeup water demand based on observed cycles of concentration. Included in the cost are:
 - Chemical treatment of Makeup water
 - Water cost of Makeup
 - Sanitary costs of Expected Blowdown (assumed 25% of Makeup is billed for sewer*)

• *Based on billing practice; results in conservative \$ savings number;

Isn't saving water only an environmental issue?

As overall costs of water used in cooling towers can be 200-300% higher than the incoming water cost at current water rates, water conservation is an economic issue as well.

True Cost of Water

Proper identification of all of the associated costs of running a system better enable you to make an accurate determination of the economic viability of an improvement.

Costs of water at Tower

- 1. Purchase price of water
- 2. Chemicals
- 3. Sewer fees

We are focusing on these 3 factors.

- 4. Maintenance of equipment not included
- 5. Energy to run cooling tower not included
- 6. Direct Labor, Supervision and Administration not included
- Costs used (<u>UIUC Internal Memo, June 28, 2010, Terry Ruprecht to Dempsey</u>)
 - Energy Savings Rate for Water : \$2.15/kgal
 - Energy Savings Rate for Sewer Disposal : \$ 2.02/kgal
 - Chemical Treatment Costs :
 - \$0/kgal for COC < 1.5; \$1.08/kgal for 1.5<COC<4; \$1.18/kgal for 4<COC<5

Example Calculation

But if Chemicals add money doesn't treating a tower cost more?

Increased efficiency means

- less overall water consumed for the same amount of cooling
- less water going to the sewer.

A modest increase in chemical costs is more than offset by the money saved on incoming water and sewer fees.

Effect of COC on Water Costs

M/E —Cost (\$/Kgal evap)

39

If cycles are increased from the ~3.5 to 5 cycles, estimated water and cost savings are:

Improving Cycles at Abbott

- Current Chemical Management at Abbott is designed for 7 COC.
- The data provided indicates that the tower is running at ~2 COC.
- Improving controls to bring the cycles up to our target of 5 COC or the design of 7 COC can produce significant water and cost savings.

Abbott Power Plant Cooling Tower Chemical Treatment Assuming Chemical treatment cost and cooling load are constant

Given Thermal Energy Storage Facility is...

Then the proposed water savings of these cycle changes would be like filling the TES almost 9 times

Potential Issues/Resolutions

- Increasing COC requires H₂SO₄ dosing
- Safety Concerns of Storing/Using Acid On-Site
- Resolution:
 - Would Need Robust System Design
 - Need Policies/Procedures for Receipts, Storage, Dispensing, Monitoring, & Containment (Environmental Compliance and DRS)
 - Environmental Regulations Impact Study
 - Modification to CT pre-treatment permits, Homeland Security related storage permits (Jim Marriott at DRS), OSHA regs (Tom Anderson at DRS)
 - http://safetyandcompliance.fs.illinois.edu

Is there a way to avoid the use of Chemicals but still increase Cycles of Concentration?

Don't Like Chemicals?

- Non-chemical cooling tower programs are available
- Many such programs are poorly documented and have questionable effectiveness
- One based on cavitation appears to have been more thoroughly vetted. This may be a good candidate for a pilot test.

VRTX Technology

Introduction to Non-Chemical Cooling Water Treatment

A 1 m

VRTX Technology - How It Works

- VRTX unit and filtration system operate independently
- Both withdraw and return water to sump
- VRTX unit converts dissolved calcium into calcium carbonate colloids, kills bacteria, and removes corrosive gases from water
- Filter system removes suspended solids from recirculating water

VRTX Cavitation Technology

How Does VRTX Generate Cavitation?

Mechanical device causes significant changes in static pressure in flowing fluid:

> Vacuum condition is optimum for the formation and growth of bubbles

>Two opposite streams collide at the mid-point of chamber (no erosion to nozzle/chamber)

VRTX Technology System Description

System Components

- VRTX Unit: VRTX chamber, pump
- Filtration system
- Suction Strainers
- Blow-down control system

VRTX Technology - How It Works

Chemical reactions

- CaCO₃ colloids act as incubation sites for dissolved calcium and carbonate ions to grow on
- CaCO₃ colloidal crystal growth is thermodynamically favored over precipitation on equipment surfaces

Scaling ions grow on pipe surface

Treated Water

Scaling ions grow on colloid surface

VRTX System with ZGF Filtration

Leadership in Energy & Environmental Design *LEED* Certification

US Green Building Council

- HDC Technology will give significant advantage toward LEED Goal Achievement and Advancement for buildings in pursuit of LEED.
- VRTX Awarded 2006 AHR Innovation Award in "Green Buildings" Category

National Registry of Environmental Professionals

Environmental Award Water, Wastewater, Storm Water Category

VRTX Technology – Case History Food Processor

Chemical Treatment

- Softened water used as makeup
- Chemical treatment at a cost of \$22K / yr
- Scale on condenser tubes 3/8 inches and in basin
- Bacteria counts 50,000 75,000 CFU / ml
- Cycles of concentration at 3.0
- Discolored water

VRTX Treatment

- Raw city water used as makeup
- Hard scale significantly reduce
- Bacteria counts 5,000 10,000 CFU/ml
- Corrosion 1.8 2.4 mpy for mild steel
- Cycles of concentration = 8
- Annual water savings 4.8 million gallons
- Makeup savings > 30%
- Blow-down reduction >70%

The STrategic Envirotechnology Partnership

Green Book Technology Summary Report

Utilizing: VRTX Technology A.W. Chesterton Company 5807 Business Park San Antonio, TX 78218 (210) 661-8800 or (800) 722 0476 www.VRTX-Technologies.com

Prepared by: Lisa Grogan, Rich Bizzozero, Jim Cain Massachusetts Office of Technical Assistance 251 Causeway St. Suite 900 Boston, MA 02114-2119 (617) 626-1060 www.state.ma.us/ota ruore 2. viciri rippireutono

Site	Industry Sector	Date of Implementation	Results
Pillsbury (MN)	Food Processing and Storage	2000	 Eliminated use, handling, and disposal of treatment chemicals Substantial water savings Cycles of concentration increased from 2.9 to 6.3
Richmond Cold Storage, Inc. (VA)	Cold Storage Warehouse	3 Units Installed, 1995, 1996, 1999	 No detectable scale or corrosion problems Substantial water savings Cycles of concentration increased from 4 to 18.9
Lancer, Corp (TX)	Plastic Injection Molding	1998	 No system shutdown related to cooling water Substantial water savings Cycles of concentration increased from 2.5 to 9
International Paper Co. (VA)	Technology Center	Sept. 1999	 Hazardous chemicals eliminated Blowdown reduced to <250 GPD from ~1000 GPD Old scale softened and removed Cycles of concentration increased from 2.8 to 5.3
Fujitsu Corporation (OR)	Microchip Manufacturing	2 Units Installed, 1993, 1994	 Scale under control Substantial water savings Cycles of concentration increased from 4.6 to 33

Operational Parameters		Richmond Cold Stor.	Lancer	Internat'l Paper	Fujitsu	Pillsbury
Cooling Tower C	Cooling Tower Capacity		2x350 Ton	1000 Ton	3x300 Ton	\sim 1300 Ton
Material of Const	ruction	Galvanized Steel	Galv. Steel	Galv. Steel	Galv. Steel	Galv. Steel
Corrosion Rate		2.0 mpy (mild steel)	Acceptable**	Acceptable**	Acceptable**	0.89 mpy
Function/Duty		Refrigeration	Hydraulic Oil	Test Lab A/C	Mfg. A/C	Refrigeration
Water Source		County Wells	City Wells	County Wells	City-Surface	City-Well
Sump Water Ten	peratures	Not Measured	90	82	88	75
Size of VRTX un	it	3x40 gpm	40 gpm	60 gpm	3x30 gpm	60 gpm
Duration of Wate	r Samples	6 months	13 months	24 months	12 months	3 months
Number of Water	Samples	3	> 30	> 30	6	48
all	Make-up	6.8	7.3	8.2	7.1	8
рн	Sump	9.3	8.8	9.2	8.9	9.08
Alkalinity	Make-up	24	198	326	38	350
(mg/L)	Sump	374	330	1498	454	1329
TDS (ma/L)	Make-up	34	364	866	68	400
IDS (IIg/L)	Sump	1377	1076	4531	2588	1600
Calainer (ma/L)	Make-up	4	174	142	22	73
Calcium (mg/L)	Sump	50	201	76	48	28
Magnesium	Make-up	2	72	48	4	34
(mg/L)	Sump	29	503	456	202	403
Chlanida (ma/I)	Make-up	6	25	210	12	22
Chioride (mg/L)	Sump	113	226	1102	446	100
Cycle of Concent	ration -					
VRTX (Prior to VRTX		18.9(4)	9 (2.5)	5.3 (2.8)	33 (4.6)	6.3 (2.9)
Installation) *						
Annual water savings (%)		20%	29%	17%	19%	41%
Annual Blowdown	%	83%	82%	67%	88%	94%
Water Savings	gallons	5.0 million	3.3 million	3.5 million	1.5 million	1.5 million

*The number of times non-volatile constituents in makeup water are concentrated by the evaporative cooling tower is the "Cycles of Concentration" (COC) for the cooling tower. If the COC factor is 3, the non-volatile constituents in the blowdown water are three times the concentrations of the makeup water. The blowdown volume (including any drift or leaks) is one third (33%) of the makeup water volume. If the COC increases to 10, then only one tenth (10%) of the makeup water is discharged as blowdown – a "calculated" water savings of 23% (33% - 10%).

**Acceptable: Not measured quantitatively by facility; however, no corrosion prevention chemicals have been added to date.

Pillsbury's VRTX unit, which has a flow rate of 60 gpm, was purchased for approximately \$60,000 (including the cost of installation). The company did not provide any specific energy consumption information beyond that used by the system's two pumps (7.5 hp and 1.5 hp, as mentioned previously). Cost savings from water conservation documented in the previous section are listed in Table 7, as are cost savings stemming from the elimination of water softening and treatment chemicals. The Sewer Availability Charge is a one-time savings from the local sewer authority that resulted from Pillsbury's reduced water consumption. Based on these figures, first year savings were in excess of \$60,000, indicating a pay back period of less than one year.

A 1 m

Controlling Cooling Tower Water Quality by Hydrodynamic Cavitation

W.A. Gaines

B.R. KimA.R. DrewsC. BaileyT. LochS. Frenette

ABSTRACT

A field study was conducted to evaluate the performance of a hydrodynamic cavitation device (HCD) for disinfection, scaling, corrosion, and heat-transfer efficiency on a cooling-tower system at an automotive testing facility. Primary findings are: (1) The HCD unit performed as well as the chemical program that it replaced in terms of bacterial control without adding any chemicals (including disinfectants); the bacterial count was maintained at $\sim 10^4$ cfu/mL over the course of the study. (2) The HCD unit enabled the cooling system to be operated at comparable cycles of concentration (CoC) to that used during the chemical program, without adversely affecting pH, scaling, or corrosion. (3) The corrosion rates of copper and mild steel were either equivalent or better than those obtained during the chemical program. (4) The use of the HCD unit did not adversely affect heat-transfer efficiency. Long-term effectiveness of this technology was not evaluated as part of this study.

Table 1. Makeup	Water Analysis
Calcium (Ca)	26.8 mg/L
Magnesium (Mg)	8.80 mg/L
Chloride (Cl ⁻)	7.5 mg/L
Sulfate (SO ₄)	23.9 mg/L
pH	7.29 S.U.
Silica (SiO ₂)	2.38 mg/L
Total alkalinity (as CaCO ₃)	72 mg/L
Phosphorous (P)	0.29 mg/L
Conductivity	214 micro Siemens

Table 4.	Measured	Corrosion	Rates	(mil/year)	of	Test Coupons
----------	----------	-----------	-------	------------	----	--------------

Date	Days Exposed	316L SS	Copper	Galvanized Steel	Untreated Mild Steel	Treated Mild Steel
Historic	23		< 0.1		1.3	
Pretrial	61		< 0.1			0.5
HCD	65	< 0.1	< 0.1	4.3	0.3	

Table 2.Cooling Water Cycles of ConcentrationBefore and During the Study Period

	Previous Three Years	150-Day Pretrial	Trial
Average	3.5	4.7	4.9
Standard Deviation	1.4	0.4	0.3

References

•General Mills – New Albany IN: Ted Iverson – 812-941-4332; <u>ted.iverson@genmills.com</u>

- •Ed Miniat Meats South Holland IL: Randy Nelson 708-589-2400; <u>rnelson@miniat.com</u>
- Preferred Freezer Chicago IL: Phil Locher 773-457-7839; <u>plocher@preferredfreezer.com</u>
- Appleton Medical Center Appleton WI: Richard Helfrich 920-731-4101
- Engineered Polymers Mora MN: Tim Joy 320-679-6786; tjoy@epcmolding.com
- •Xavier University Cincinnati OH: Rob Edwards 513-745-3855

ROUTE 2

Decrease CT water consumption through improved control

• Monitoring

What is Improved Monitoring?

- Quantity of Blowdown is controlled by measurement of objective criteria such as conductivity
- Continuous monitoring is better than periodic monitoring – allows automated control
- Example of one such system TRASAR
 3D from Nalco

North Campus Chiller Plant Experience with Trasar 3D

What benefits, if any, due to improved monitoring?

Improved Monitoring Reduces Tower Makeup

Improved Monitoring Reduces Tower Makeup

Make-up water (kgal)

Future of Trasar @ UIUC

The Nalco Representative indicated that units have already been purchased for Oak Street and Vet Med Chiller Plants but are awaiting installation. If additional units are needed for other locations:

- The expected cost of each unit would be \$10,000; varies by unit
- Installations by Nalco have been completed for \$2,000-\$4,000 per unit.

Closer attention to water use numbers, metering, and prompt remedial action are likely to reduce water lost to malfunctioning hardware.

- At ISTC, during retrocommissioning, cooling tower blowdown control was found to be malfunctioning
- Similar situations have existed at Vet Med based on what we have heard anecdotally.

ROUTE 3

Reduce Cooling Load

How Does One Reduce Cooling Load?

- Efficient energy use at buildings lowers cooling load
- Only campus efforts with retrocommissioning are highlighted but many pathways to improve efficiency exist; outside the scope of this project.
- Efficient energy use at chiller plant
 - optimization, condenser heat recovery; combined cooling/heating are all potential routes

An Example of The Energy-Water Nexus On Campus

- Building Retrocommissioning
 - The skilled analysis of a building's HVAC systems and maintenance program can play a part in reducing the thermal load that a building adds to the Campus Chilled Water System.

Retrocommissioning Energy Load Reduction in Select Locations

Retrocommissioned Buildings	Chilled Water Saved per year (MMBTU)			
National Soybean Research Center	3,316			
Turner Hall	6,223			
Animal Sciences Laboratory	3,091			
Bevier Hall	2,383			
Psychology Building	3,032			
Krannert Center for Performing Art	2,698			
Chemical & Life Sciences Laboratory	13			
	20,756			
Data from Retrocommissioning website at http://www.fs.illinois.edu/retro/				

The cooling load reductions achieved by retrocommissioning reduces cooling tower water consumption as well. The example in the next slide calculates the cooling tower water that WOULD have been consumed if this energy had NOT been saved.

Result of these Retro-X projects

Result of these Retro-X projects

Now that we have determined we are saving 4.221 Mgal of water, we can now calculate a cost savings.

Using the Energy Savings Rates: Incoming Water: \$2.15/kgal Sewer Disposal: \$2.02/kgal Chemical treatment at 4 COC: \$1.08/kgal

Assuming a Treated Tower at 4 COCIncoming Water Cost
Abated (\$)\$ 9,075.95Chemical Cost Abated (\$)\$ 4,599.08Sewer Cost of Blowdown
Abated(\$)\$ 2,131.79Total Cost Abated (\$)\$ 15,766.82

Result of these Retro-X projects

Water associated costs at		
the Cooling Towers for FY	\$ 959,438	
2011 (excl Abbott)		
Retro-X saved in cooling		
water expenses	\$ 15,766.82	
% \$ savings of FY 2011	1.6%	

FY2011 Campus water CT	
Only (excl Abbott)	278,684
Retro-X saved cooling	
water (Mgal)	4.2
% kgal CT FY 2011 savings (ex Abbott)	1.5%

FY 2011 Tower Water Consumption

Savings in Water As a Result of Retrocommissioning in Aggregate

If we add up the total first year energy savings from retrocommissioning of buildings served by the Chiller Plants

Retro Commissioning saved 106,666 MMBTU After accounting for heat added by the compressors at the Chiller Plant, we estimate: Total Heat saved 135,782 MMBTU

It would require

16.27 million gallons of water to be evaporated to remove this heat At current operation, the Chiller Plants would consume 21.69 million gallons of water to provide this cooling.

> Current Retrocommissioning projects have resulted in savings of ~21 Mgal water for cooling in the first year after Retrocommissioning

Cost Savings As a Result of Retrocommissioning in Aggregate

	Savings Rate (\$/MMBTU)	Cost Savings (\$)	The cost savings from water consumption abatement provides an additional 10% savings to the current calculation used to evaluate retrocommissioning projects.
From Retro-X Energy Rate	\$6.9300	\$739 <i>,</i> 195.38	This demonstrates a great potential for cost and water savings by the
Savings from Cooling water	\$0.7596	\$81,026.39	of the Retrocommissioning efforts.
Total Savings by Retrofit	\$7.69	\$820,221.77	The additional cost and fuel savings from reductions in mechanical load
% Added Savings Represented by Cooling Water		10%	calculations and would represent further savings currently unaccounted for

ROUTE 4

Cascade water from another process for CT make-up

Abbott RO rejectOak Street Sub-soil DrainageReprocessed blowdown

Oak Street Sub-soil Drainage

- Drainage of the order of 50 gpm
- Oak Street Chiller Plant make-up ~200 gpm
- Substantial reductions in cooling tower water usage possible if drainage can be used for make-up

Major Issue

Drainage water quality not suitable without recourse to treatment

Water Quality

Water Quality to Cooling Tower

Parameters	Value
	mg/L
TDS	176
Calculated TDS	169
Cations	
Na	38
К	2.2
Ca	12.4
Mg	12.35
Sr	0.16
Fe	0
Barium	0.07
Anions	
Chloride	7
Sulfate	0
Bicarbonate as	
CaCO3	147
Carbonate as CaCO3	14
Fluoride	0.98
Si as SiO2	7.7
OH (mol/l)	0.00
pH at 8.4 C	9.08

Oak Street Drainage	
Parameters	Value
	mg/L
TDS	986
Calculated TDS	943
Cations	
Na	116
Κ	1.6
Ca	154
Mg	55
Sr	0.26
Fe	0.2
Barium	0.13
Anions	
Chloride	235
Sulfate	109
Bicarbonate as	
CaCO3	430
Carbonate as CaCO3	0
Fluoride	ND
Si as SiO2	13.7
pH at 23.6 C	7.6

Caveat: Water quality is likely to be variable; influenced by the precipitation pattern

Source: Report to Student Sustainability Committee By E. Day, N. Grabowski, A. Rennegarbe Title of Report: Design of a Sub-soil Drainage Water Distribution System Date: 12/18/2009 Copy Obtained From: Jim Hopper, UIUC Water Station

Source: Illinois State Water Survey

be checked

Oak Street Sub-soil Drainage - Prior Study

- Report: *Design of a Sub-soil Drainage Water Distribution System*
 - By E. Day, N. Grabowski, A. Rennegarbe
 - Report to Student Sustainability Committee
- Suggests that cost of treating Sub-soil Drainage water is excessive
 - Evaluated RO as treatment option; major costs identified in descending order
 - Disposal costs of RO reject flagged as major cost
 - pH adjustment of RO permeate was flagged as major cost
 - Energy for RO operation identified as significant cost component
 - Anti-scalant dosage costs were identified as significant

Prior Study...Observations

- The improved quality of tower water is not reflected in the COC
- Basis for chemical costs are unclear but likely incorrect (Appendix B, Fig 2 suggests that water input to cooling tower is 100% raw drainage water with sulfuric acid to control alkalinity rather than RO water)

Use of Alternative Water Sources

Tentative Estimates

Oak Street Sub-soil Drainage -Summary

- Suggest taking a second look at this opportunity
- Maybe economically neutral
- Uncertainties with water quality data need to be resolved (paper study/analytical data collection & pilot encouraged)
- If feasible, explore lease/contract option rather than ownership

ROUTE 5

Use CT blowdown to displace water use in another application

Cooling Tower Blowdown as RO Input?

- Given the low COC at Abbott Tower and the large water consumption, does it make sense to use the CT blow down as RO input?
- In other words, what benefits might accrue if Tower/RO is optimized as a system?

Abbott Water Paths

Example: Systems Designed Separately

Baseline

Incoming Water = 1000 (RO)+ 1000 (CT) = 2000 gpm Total Effluent = 150 (RO) + 500 (CT) = 650 gpm

Path 1

Example: Systems Designed as Parts of a Whole

Appendix

- Campus Water Bill
- Untreated Towers FY 2011 Operation
- Treated Towers FY 2011 Operation
- COC Calculation
- True Cost of Water Calculation
- Campus Savings Calculation
 - Table of Values
 - Calculation of Incoming Water Savings (kgal)
 - Calculation of Total Water Cost Savings (\$)
- Utility Rates for FY 2011 Memo from Terry Ruprecht for Energy Savings Rates
- Retrocommissioned Buildings
- Abbott
 - Abbott Cooling Tower Makeup Flow Rates
 - Abbott RO Operation, 2 pages
- Oak Street Sub-soil Drainage Examination

Campus Water Bill

Usage Month	Calendar Year	Fiscal Month	Fiscal Year	TOTAL WATER COST (\$)	TOTAL WATER USAGE (Kgals)	Cost (\$/kgal)
Jul	2010	AUG	2011	\$274,735	111,716	
Aug	2010	SEP	2011	\$283,767	116,120	
Sep	2010	OCT	2011	\$288,447	118,314	
Oct	2010	NOV	2011	\$233,662	94,154	
Nov	2010	DEC	2011	\$198,983	78,631	
Dec	2010	JAN	2011	\$201,982	80,621	
Jan	2011	FEB	2011	\$174,090	67,691	
Feb	2011	MAR	2011	\$177,958	69,637	
Mar	2011	APR	2011	\$209,207	83,012	
Apr	2011	MAY	2011	\$213,736	85,270	
May	2011	JUN	2011	\$224,150	90,067	
Jun	2011	JUL	2011	\$256,968	104,060	
12 MO		TOTAL		\$2,737,683	1,099,293	2.49

	Untreated Towers	Estimated Cycles	Makeup (Kgal)	Evaporation (kgal)	Blowdown (kgal)
		(FY 2011)	(FY 2011)	(FY 2011)	(FY 2011)
1	Transporation Building	1.07	1,171	75	1,097
2	National Soybean Research Center	1.14	454	57	397
3	Medical Sciences Building	1.16	429	58	371
4	Lincoln Avenue Residence Hall	1.13	523	60	463
5	Ice Arena	1.20	4,128	689	3,438
6	Illinois Street Residence Hall	1.18	295	44	251
7	Burnsides Research Laboratory	1.27	2,322	498	1,824
8	Natural Resource Studies Annex	1.26	5,598	1,140	4,458
9	Pennsylvania Avenue Residence Hall	1.23	247	46	200
10	Illini Union	1.28	405	87	317
11	Housing Food Stores	1.28	9,219	2,033	7,186
12	English Building	1.23	2,464	467	1,997
13	Burrill Hall	1.27	511	109	402
14	Printing & Photographic Service Building	1.39	2,376	661	1,715
15	Veterinary Medicine Chiller Plant (Meter ID 3)	1.36	4,125	1,085	3,039
16	Veterinary Medicine Chiller Plant (Meter ID 2)	1.41	4,182	1,210	2,972
17	Veterinary Medicine Chiller Plant (Meter ID 1)	1.34	27,503	6,922	20,581
18	Law Building	1.43	5,635	1,700	3,935
19	Illinois Sustainable Technology Center	1.58	3,600	1,316	2,12284
	Tatal	1 20	75 196	19 250	56 027

	Treated Towers	Estimated Cvcles	Makeup (Kgal)	Evaporation (kgal)	Blowdown (kgal)
		(FY 2011)	(FY 2011)	(FY 2011)	(FY 2011)
	Construction Engineering Research Lab	-	-	_	-
	State Regional Office Building	-	-	-	-
1	Plant Sciences Laboratory	1.57	1,065	385	679
2	Water Survey Research Center	1.79	2,798	1,231	1,567
3	Abbott Power Plant	1.93	48,934	23,619	25,314
4	Animal Science Air Conditioning Center	2.27	16,809	9,388	7,421
5	Library Air Conditioning Center (Meter ID 5)	2.18	19,838	10,741	9,097
6	Temple Hoyne Buell Hall	2.89	1,208	789	419
7	Library Air Conditioning Center (Meter ID 4)	3.12	4,822	3,276	1,546
8	Library Air Conditioning Center (Meter ID 7)	3.01	5,793	3,872	1,921
9	Chemical & Life Sciences Lab	3.24	696	481	215
10	North Campus Chiller Plant (North Meter)	3.18	42,568	29,202	13,365
11	North Campus Chiller Plant (South Meter)	3.13	10,939	7,445	3,494
12	Oak Street Chiller Plant	3.54	92,015	66,023	25,992
13	Grainger Engineering Library	3.52	4,948	3,542	11406

COC Calculation

	Makeup (kgal)	Blowdown (kgal)	Evaporation (kgal)
Treated Towers	252,431	92,435	
Untreated Towers	75,186	56,927	
All Cooling Towers (incl Abbott)	327,617	149,362	178,255

$$M = E (COC/(COC-1))$$

E/B + 1 = COC

M = Makeup B = Blowdown E = Evaporation COC = Cycles of Concentration

Back to Presentation

True Cost of water Example Calculation

- Assume constant heat load; i.e., constant evaporation
- Blowdown (kgal/min) = Evaporation (kgal/min)/(COC-1)
- Make-up (kgal/min) = Evaporation (kgal/min)*[COC/(COC-1)]
- Make-up at COC of $3.5 = E^{1.4}$; Blowdown at COC of $3.5 = E^{0.4}$
- Make-up at COC of $5 = E^{1.25}$; Blowdown at COC of $5 = E^{0.25}$
- Costs at $3.5 \text{ COC} = (E^{1.4})^{\$} 2.15 + (E^{0.4})^{a} 2.02 + (E^{1.4})^{\$} 1.08 = \$5.33^{*}E$
- Costs at 5 COC = $(E^{1.25})^{2.15+}(E^{0.25})^{2.15+}(E^{1.25}$
- Relative costs $_{COC=5/COC=3.5} = 0.875$ (~10% savings)
- Incoming Water Savings $_{COC = 5/COC = 3.5} = 1.25/1.4 = 0.89$ (~10% savings)
- Discharged Water Savings _{COC = 5/COC=3.5} = 0.25/0.4= 0.625 (~40% savings)
 *. In previous slide, costs reflect blowdown fixed at 25% of makeup

Back to presentation

Campus Savings Calculation

		Makeup water savings			
	cost savings	(kgal)	proposed cycles	3	
Oak St	\$ 27,443.22	9,486.04	5		
NCCP -North	\$ 19,117.27	6,064.86	5		
NCCP -South	\$ 5,194.63	1,632.14	5		
Vet Med	\$ 50,940.63	24,287.66	5		
Housing	\$ 14,356.32	6,508.71	4		
Law Library	\$ 6,497.48	3,368.29	4		
ISTC	\$ 3,008.35	1,845.90	4		
NRSA	\$ 9,187.20	4,077.91	4		
	Current (kgal)	With Changes (kgal)	\$ Current	\$ With Changes	
Total Cycle Change savings	0	57,271.51	-	135,745	Sum of cost savings listed above
FY 2011 Total Campus Water Use	1,099,293	1,042,021			
FY 2011 Total Campus Water Use – CT Only	278,684	221,412	959, 438 <mark>*</mark>	823,693	
	Savings wrt to All Campus due to changes (kgal)			Savings wrt to CT due to changes (ex Abbott) (\$)	With Change (kgal)
Total Campus Water Use	1,042,021.24		Total CT (ex Abbott)	823,693	221,412
Total Campus Savings in Incoming Water Volume	5.2%		% Savings	14.1%	20.6%

Back to Presentation

Next

Abbott Cooling Tower Savings

			Cost to treat
	Proposed COC	Makeup (kgal)	(\$)
Current			
Settings	1.93	48,933.66	\$ 178,989.55
Proposed			
settings	5	29,524.02	\$ 107,992.98
			% savings
	Savings (\$)	Savings (kgal)	(kgal)
By changing			
Abbott CT to			
5 COC	\$ 70,996.58	19,409.64	39.7%
Total Campus water FY 2011 (kgal)		1,099,293	
% savings (kgal) by changing Abbott CT to 5 COC		1.8%	

Back to Presentation

Campus Savings Calculation Incoming Water (kgal)

Campus Savings Calculation Total Water Cost (\$)

Utility Rates Memo

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

acilities & Services		4
hysical Plant Service Building		4
501 South Oak Street		
hampaign, IL 61820		-
	· · · · ·	

DATE:	JUNE 28, 2010
TO:	J.G. DEMPSEY
	G. WAAS
FROM:	TERRY RUPRECHT
RE:	UTILITY RATES FOR FY 2011

For your information, the following is a summary of charge out rates for utilities at the Urbana-Champaign campus for the Fiscal Year ending 30-Jun-2011. These rates apply to all facilities not receiving direct billings from outside utility providers.

Commodity	Unit of Measure	Billing Rate *	Energy Savings Rate **
Steam	\$/1000 lbs	\$19.8309	\$10.4730
Electricity	\$/kwh	\$0.0791	\$0.0497
Chilled Water	\$/Mmbtu	\$12.8882	\$6.9302
Water	\$/1000 gal	\$2.4435	\$2.1521
Sanitary Sewer	\$/1000 gal	\$2.4368	\$2.0262

*Billing Rate – The fully costed rate for billing utilities to campus units. Rates are pending approval by University Administration.

** Energy Savings rate – Fuel and consumable materials costs only. To be used to calculate energy savings for energy conservation projects.

Please do not hesitate to call me at 333-7900 if you have any questions with respect to this material.

1

CC:	K. ERICKSON	T. TEMPLES
	M. MARQUISSEE	C. TAYLOR
	J. RIX	K. REIFSTECK
Retro-X: Buildings Completed

Building	After (MMBTU)	Before (MMBTU)
ACES Library Info. & Alumni Center	5,224	12,742
Animal Sciences Laboratory	6,852	9,943
Bevier Hall	8,921	11,304
Chemical & Life Sciences Laboratory	2,516	2,529
Coordinated Science Laboratory	12,886	20,704
Foellinger Auditorium	1,049	1,647
Foreign Languages Building	2,785	2,368
Henry Administration Building	3,390	5,170
Illini Union Bookstore	0	0
Krannert Center for Performing Arts	14,387	17,085
Loomis Laboratory of Physics	14,434	19,512
Madigan Laboratory Edward R	19,221	28,025
Mechanical Engineering Laboratory	14,132	22,944
Music Building	7,223	12,066
Nat Center for Supercomp Appl	8,265	16,270
National Soybean Research Center	5,710	9,026
Newmark Civil Engineering Building	11,028	21,964
Physical Plant Service Building	0	0
Psychology Laboratory	13,445	16,477
Siebel Center for Computer Science	18,832	32,241
Turner Hall	12,539	18,762
Undergraduate Library	7,282	6,961
Wohlers Hall	5,165	14,212
Grand Total	195,286	301,952

Back to presentation 106,666 MMBTU

The energy saved is 106,666 MMBTU

Abbott Cooling Tower Makeup Flow Rates

	Makeup
Month	(kgal)
FY 2011 Total	48,934
1	6,590
2	4,181
3	3,960
4	2,681
5	2,678
6	2,647
7	4,473
8	4,299
9	4,866
10	3,079
11	3,501
12	5 <i>,</i> 980
FY 2012 Total	12,843
7	2,880
8	3,532
9	2,292
10	2,231
11	1,908

Abbott RO Operation (pg 1 of 2)

RO RO1	1st Pass
Permeat	e Flow
	kgal
FY 2010	26,516
Jul-09	2,242
Aug-09	1,437
Sep-09	1,481
Oct-09	1,802
Nov-09	1,852
Dec-09	2,480
Jan-10	3,512
Feb-10	3,674
Mar-10	3,133
Apr-10	1,643
May-10	1,558
Jun-10	1,703
FY 2011	25,007
Jul-10	1,869
Aug-10	1,678
Sep-10	1,913
Oct-10	1,846
Nov-10	2,251
Dec-10	3,484
Jan-11	3,288
Feb-11	3,052
Mar-11	2,524
Apr-11	2,042
Mav-11	1.060

RO RO1	1st Pass
Reject	Flow
	kgal
FY 2010	5,160
Jul-09	365
Aug-09	250
Sep-09	272
Oct-09	359
Nov-09	384
Dec-09	521
Jan-10	774
Feb-10	726
Mar-10	628
Apr-10	310
May-10	276
Jun-10	297
FY 2011	4,757
Jul-10	334
Aug-10	299
Sep-10	348
Oct-10	337
Nov-10	416
Dec-10	649
Jan-11	618
Feb-11	577
Mar-11	505
Apr-11	443
Mav-11	229

RO RO12	2nd Pass
Permeat	e Flow
	kgal
FY 2010	25,878
Jul-09	2,119
Aug-09	1,389
Sep-09	1,471
Oct-09	1,794
Nov-09	1,832
Dec-09	2,437
Jan-10	3,422
Feb-10	3,574
Mar-10	3,069
Apr-10	1,643
May-10	1,538
Jun-10	1,589
FY 2011	21,496
Jul-10	1,684
Aug-10	1,577
Sep-10	1,760
Oct-10	1,698
Nov-10	2,059
Dec-10	2,219
Jan-11	2,801
Feb-11	1,964
Mar-11	2,512
Apr-11	1,908
May-11	1,314

RO RO1 2nd Pass		
Reject Flow		
	kgal	
FY 2010	2,569	
Jul-09	178	
Aug-09	139	
Sep-09	133	
Oct-09	161	
Nov-09	176	
Dec-09	242	
Jan-10	363	
Feb-10	386	
Mar-10	320	
Apr-10	151	
May-10	143	
Jun-10	176	
FY 2011	2,769	
Jul-10	230	
Aug-10	151	
Sep-10	203	
Oct-10	202	
Nov-10	254	
Dec-10	432	
Jan-11	407	
Feb-11	382	
Mar-11	251	
Apr-11	174	
May-11	83	

Abbott RO Operation (pg 2 of 2)

RO RO2 1st	t Pass Permeate	
I	low	
Sum of Flow (kgal)		
FY 2010	24,682	
Jul-09	2,784	
Aug-09	2,162	
Sep-09	1,847	
Oct-09	1,696	
Nov-09	1,808	
Dec-09	1,636	
Jan-10	1,427	
Feb-10	1,500	
Mar-10	1,540	
Apr-10	2,184	
May-10	2,479	
Jun-10	3,621	
FY 2011	22,788	
Jul-10	2,982	
Aug-10	2,078	
Sep-10	2,630	
Oct-10	1,965	
Nov-10	1,191	
Dec-10	1,823	
Jan-11	1,954	
Feb-11	1,586	
Mar-11	1,598	
Apr-11	2,208	
May-11	2,772	

RO ROZ	2 1st Pass Reject	
Flow		
(Sum of Flow (kgal)	
FY 2010	4,628	
Jul-09	552	
Aug-09	430	
Sep-09	380	
Oct-09	321	
Nov-09	308	
Dec-09	280	
Jan-10	245	
Feb-10	264	
Mar-10	266	
Apr-10	398	
May-10	477	
Jun-10	707	
FY 2011	3,905	
Jul-10	539	
Aug-10	363	
Sep-10	435	
Oct-10	322	
Nov-10	206	
Dec-10	305	
Jan-11	328	
Feb-11	257	
Mar-11	241	
Apr-11	396	
May-11	514	

RO RO2 21	nd Pass Permeate
Flow	
	Sum of Flow (kgal)
FY 2010	23,278
Jul-09	2,588
Aug-09	2,013
Sep-09	1,712
Oct-09	1,615
Nov-09	1,727
Dec-09	1,572
Jan-10	1,360
Feb-10	1,438
Mar-10	1,485
Apr-10	2,084
May-10	2,338
Jun-10	3,348
FY 2011	21,959
Jul-10	2,801
Aug-10	1,964
Sep-10	2,512
Oct-10	1,908
Nov-10	1,314
Dec-10	1,756
Jan-11	1,895
Feb-11	1,534
Mar-11	1,543
Apr-11	2,112
May-11	2,619

RO RO2 2nd Pass Reject		
Flow		
Sui	m of Flow (kgal)	
FY 2010	2,537	
Jul-09	298	
Aug-09	228	
Sep-09	194	
Oct-09	200	
Nov-09	196	
Dec-09	165	
Jan-10	129	
Feb-10	134	
Mar-10	136	
Apr-10	209	
May-10	250	
Jun-10	397	
FY 2011	2,187	
Jul-10	313	
Aug-10	206	
Sep-10	243	
Oct-10	177	
Nov-10	120	
Dec-10	177	
Jan-11	173	
Feb-11	140	
Mar-11	128	
Apr-11	211	
May-11	298 ₁₁₂	

Oak Street Sub-soil Drainage Examination of Appendix B Fig 2

- Water flow rate = 196 gallons/min = 1.03E5 kgal/yr (196*60*24*365)
- COC = 2.8 = Tower Ca (mg/l) (as modeled by NALCO/Input Ca (mg/l) = 431.2/154
- The Oak Street Sub-soil Drainage water has a Ca content of 154 mg/l; it is likely that Fig 2 uses raw Sub-soil Drainage not RO as input
- Furthermore, NALCO model assumes Tower Alkalinity to be at 1.86 meq/l
- Assuming that alkalinity cycles up at 2.8 COC, input alkalinity has to 1.86/2.8 = 0.665
- But Oak Street Sub-soil Drainage is at an Alkalinity of 8.59 meq/l
- Therefore, alkalinity has to be reduced by 7.925 meq/l (8.59-0.66)
- This requires sulfuric acid addition of 7.925 meq/l or 7.925 meq/l*48 mg/meq = 380.4 mg/l
- 380.4 mg/l = 1439.8 mg/gallon = 1439.8 g/kgal = 1.4398 kg/kgal =3.173 lb/kgal
- Sulfuric acid additions per year = 3.173 lb/kgal *1.03E5 kgal/yr = 3.2694E5 lb/yr
- At \$ 0.25/lb, annual costs = \$81,744 (this # is close to the number in NALCO spreadsheet in Fig 2)
- Therefore \$/kgal = 81,744/1.03E5 = \$0.79/kgal (reported in Table 1 Appendix B)

Source: Report to Student Sustainability Committee By E. Day, N. Grabowski, A. Rennegarbe Title of Report: Design of a Sub-soil Drainage Water Distribution System Date: 12/18/2009 Copy Obtained From: Jim Hopper, UIUC Water Station